9 August 2023

Sixfold Bioscience announces formation of Scientific Advisory Board

Sixfold Bioscience, a leading AI-enabled RNA delivery company that leverages the body’s evolved delivery pathways, is pleased to announce the formation of its Scientific Advisory Board. The board comprises world-renowned industry experts who will provide strategic guidance and scientific advice as the company advances its development pipeline.

The Scientific Advisory Board members are:

 

  • Professor Jonathan Watts, RNA Therapeutics Institute, UMass Medical School
  • Dr Sjef De Kimpe, former VP Product Development at Biomarin
  • Professor Roger Strömberg, Karolinska Institute
  • Dr Mike Webb, former VP of Development Chemistry and Analysis for GSK


"We are thrilled to welcome this esteemed group of experts to our Scientific Advisory Board," said Dr. Anna Perdrix Rosell, co-founder and co-CEO of Sixfold Bioscience. "Their collective expertise and exceptional contributions have and will continue to be invaluable as we continue to develop our innovative RNA delivery technologies to improve patient outcomes."

The board members, who have been formally working with the company on their research and development efforts for the past 10 months, bring a wealth of experience in various fields including medicinal chemistry, regulatory engagement, therapeutic optimisation and oligonucleotide manufacture. Professor Jonathan Watts is a renowned expert in therapeutic oligonucleotides and works on new approaches to study oligonucleotide design and preclinical evaluation. Dr Sjef De Kimpe has a strong track record of leading oligonucleotide companies through the regulatory process, having led Prosensa's engagements with the FDA in early development and serving as VP Product Development at Biomarin. Professor Roger Strömberg advises many pharmaceutical companies on oligonucleotide and medicinal chemistry and has been instrumental in advancing the field. Dr Mike Webb led the development of GSK's oligonucleotide pipeline and manufacturing capabilities and brings a wealth of experience in development chemistry, analysis and manufacture of therapeutic oligonucleotides.

“RNA Therapeutics have the potential to transform medicine – but only in the cell types where therapeutic RNA molecules can be delivered. Sixfold has built a great team and is thinking creatively to address this bottleneck with the power of evolution, of AI and most importantly, of a lot of data. Their approach is opening opportunities in new cell types and therefore in new diseases.” said Prof Watts

“Sixfold has brought together a highly capable and diverse team that develops organ and cell-specific delivery solutions to unlock the full potential of RNA-therapeutics. It's been a pleasure to see the progress made thus far and I'm excited to join the team on this journey” said Dr De Kimpe

“There is no doubt that to further enhance nucleic acid therapies, irrespective of mode of action, improvement of delivery to the site of action is the most important area to solve now. This requires innovative solutions and ways of thinking about delivery, such as those being pioneered by Sixfold” said Prof Strömberg

“Oligonucleotides have the potential to transform the lives of patients whose lives are decimated by disease. The Sixfold approach is breaking down and solving the biggest issue faced by this modality, access to organs, tissue and cells that hitherto were not accessible to these kinds of molecules. This approach has the potential to be transformational. This has been achieved by bringing together an inspiring team with cutting edge science and technology. Working with the team to understand how we scale and manufacture for the future is inspiring.” said Dr Webb

The formation of the Scientific Advisory Board is a significant milestone for Sixfold Bioscience as it continues to develop cutting-edge RNA delivery technology. The board will provide essential guidance and input as the company expands its research and development efforts and accelerates its mission to catalyze the shift from potential to reality for RNA medicines by solving targeted delivery for the 99% of cells that lack an effective delivery system.

Related topics